# Python math Functions

The Python math Library provides various Functions and Constants / Properties, which allows us to perform mathematical functionality. Unlike other Python global objects, Properties and Functions inside the Python math library object is static. So, we can access the Python math properties as math.PI and functions as math.abs(number).

## Python math Object Properties

The list of Properties or Constants available in Python math library.

## Python math Functions

The list of mathematical Functions available in Python math Library. Please follow this links to view the tutorial on the available math functions in Python.

### Python Power and Logarithmic Functions

The following functions are the list of Power and logarithmic functions available in Python math Library.

### Python Trigonometric Functions

The following functions are the list of Trigonometric functions available in Python math Library.

### Python Hyperbolic Functions

The Python Hyperbolic Functions are trigonometric functions which allow us to perform the following math functions on Hyperbolic, instead of Circles.

### Python Angular Functions

The following functions are the list of Angular functions available in Python math Library.

### Python Special Functions

The following functions are the list of Special functions available in Python math Library.

## Python math Functions Examples

The following examples help you to understand these math or mathematical functions in Python

### Python math constants Example

In this Python Mathematical constants example, we use the list of available constants in the math library. They are pi, e, tau, inf, and nan.

`# Python Constant Examples import math print('pi Constant - Pi Value = ', math.pi)print('pi Constant - Degrees of Pi Value = ', math.degrees(math.pi)) print('\ne Constant - e Value = ', math.pi)print('e Constant - Degrees of e Value = ', math.degrees(math.e)) print('\ntau Constant - tau Value = ', math.tau)print('tau Constant - Degrees of tau Value = ', math.degrees(math.tau)) print('\ninf Constant - Positive Infinity = ', math.inf)print('inf Constant - Negative Infinity = ', -math.inf) print('\nNaN Constant - Not a Number = ', math.nan)`

Python math constants output

``````pi Constant - Pi Value =  3.141592653589793
pi Constant - Degrees of Pi Value =  180.0

e Constant - e Value =  3.141592653589793
e Constant - Degrees of e Value =  155.74607629780772

tau Constant - tau Value =  6.283185307179586
tau Constant - Degrees of tau Value =  360.0

inf Constant - Positive Infinity =  inf
inf Constant - Negative Infinity =  -inf

NaN Constant - Not a Number =  nan``````

### Python math Functions Example 1

In this Python math or Mathematical Functions example, we are going to use the fabs to find the absolute value, and copysign to change the sign. Next, we used the Python ceil and floor function to find the Ceiling and Floor values. Within the last statement, we used the factorial function to find the factorial of a given value.

`# Python Mathematical Functions Examples import math x = 10.98y = 30.22z = -40.95 print('FABS Function - Absolute Value of z = ', math.fabs(z))print('FABS Function - Absolute Value of -124.897 = ', math.fabs(-124.897)) print('\ncopysign Function - copysign Value of x, z = ', math.copysign(x, z))print('copysign Function - copysign Value of z, x = ', math.copysign(z, x)) print('\nCEIL Function - Ceiling Value of x = ', math.ceil(x))print('CEIL Function - Ceiling Value of y = ', math.ceil(y)) print('\nFLOOR Function - Floor Value of x = ', math.floor(x))print('FLOOR Function - Floor Value of y = ', math.floor(y)) print('\nFactorial Function - Factorial of 3 = ', math.factorial(3))print('Factorial Function - Factorial of 5 = ', math.factorial(5))`

Python math Functions output

``````FABS Function - Absolute Value of z =  40.95
FABS Function - Absolute Value of -124.897 =  124.897

copysign Function - copysign Value of x, z =  -10.98
copysign Function - copysign Value of z, x =  40.95

CEIL Function - Ceiling Value of x =  11
CEIL Function - Ceiling Value of y =  31

FLOOR Function - Floor Value of x =  10
FLOOR Function - Floor Value of y =  30

Factorial Function - Factorial of 3 =  6
Factorial Function - Factorial of 5 =  120``````

### Python math Functions Example 2

In this Python Mathematical Functions example, we used fmod, frexp, fsum, and gcd functions with different values.

```# Python mathematical Functions Examples

import math

print('FMOD Function - Mod Value of 2 and 3 = ', math.fmod(2, 3))
print('FMOD Function - Mod Value of 225.55 and 5.5 = ', math.fmod(222.55, 5.5))

print('\nFREXP Function - Mantissa and Exponent Value of 5 = ', math.frexp(5))
print('FREXP Function - Mantissa and Exponent Value of -9 = ', math.frexp(-9))

print('\nFSUM Function - Sum of Tuple Items = ', math.fsum((10, 20, 30, 40)))
print('FSUM Function - Sum of List Items = ', math.fsum([5, 22, 35, 9]))

print('\nGCD Function - GCD of two Value of 10 and 2 = ', math.gcd(10, 2))
print('GCD Function - GCD of two Value of 100 and 15 = ', math.gcd(100, 15))```

Python math Functions output

``````FMOD Function - Mod Value of 2 and 3 =  2.0
FMOD Function - Mod Value of 225.55 and 5.5 =  2.5500000000000114

FREXP Function - Mantissa and Exponent Value of 5 =  (0.625, 3)
FREXP Function - Mantissa and Exponent Value of -9 =  (-0.5625, 4)

FSUM Function - Sum of Tuple Items =  100.0
FSUM Function - Sum of List Items =  71.0

GCD Function - GCD of two Value of 10 and 2 =  2
GCD Function - GCD of two Value of 100 and 15 =  5``````

### Python Mathematical Functions Example 3

In this Python math Functions example, we used round, ldexp, mode, trunc, and remainder functions.

`# Python Mathematical Functions Examples import math print('ROUND Function - Rounded Value 100.98763 = ', round(100.9876, 2))print('ROUND Function - Rounded Value 125.932832 = ', round(125.932832, 3)) print('\nLDEXP Function - LDEXP (FREXP inverse) Value of 4, 5 = ', math.ldexp(4, 5))print('LDEXP Function - LDEXP (FREXP inverse) Value of -9, 2 = ', math.ldexp(-9, 2)) print('\nMODF Function - Modf (Divided 1 to 2) Value of 100 = ', math.modf(100))print('MODF Function - Modf (Divided 1 to 2) Value of 120.98 = ', math.modf(120.98)) print('\nTRUNC Function - Truncated Value 100.98763 = ', math.trunc(100.9876))print('ROUND Function - Truncated Value 125.932832 = ', math.trunc(-125.932832)) print('\nREMAINDER Function - Remainder of 29 and 5 = ', math.remainder(20, 5))print('REMAINDER Function - Remainder of 10 and 3 = ', math.remainder(10, 3))`

Python Mathematical Functions output

``````ROUND Function - Rounded Value 100.98763 =  100.99
ROUND Function - Rounded Value 125.932832 =  125.933

LDEXP Function - LDEXP (FREXP inverse) Value of 4, 5 =  128.0
LDEXP Function - LDEXP (FREXP inverse) Value of -9, 2 =  -36.0

MODF Function - Modf (Divided 1 to 2) Value of 100 =  (0.0, 100.0)
MODF Function - Modf (Divided 1 to 2) Value of 120.98 =  (0.980000000000004, 120.0)

TRUNC Function - Truncated Value 100.98763 =  100
ROUND Function - Truncated Value 125.932832 =  -125

REMAINDER Function - Remainder of 29 and 5 =  0.0
REMAINDER Function - Remainder of 10 and 3 =  1.0``````

### Python Logarithmic Functions Example

In this Python Logarithmic Function example, we use the exp, expm1 to get exp values. Next, we used the log, log2, and log10 functions to get the natural logarithmic value, base 2 Logarithmic value. And base 10 logarithmic value. Then we used the pow to find x raised to the power of y, and sqrt function to find the square root of a number.

`# Python Power and Logarithmic Functions Examples import math print('EXP Function - exp Value of 5 = ', math.exp(5))print('EXP Function - exp Value of -3 = ', math.exp(-3)) print('\nEXPM1 Function - expm1 Value of 8 = ', math.expm1(8))print('EXPM1 Function - expm1 Value of -5 = ', math.expm1(-5)) print('\nLOG Function - logarithmic Value of 5 = ', math.log(5))print('LOG Function - logarithmic Value of 100 Base 2 = ', math.log(100, 2)) print('\nLOG2 Function - logarithmic Value of 120 Base 2 = ', math.log2(120)) print('\nLOG10 Function - logarithmic Value of 150 Base 10 = ', math.log2(150)) print('\nPOW Function - 2 Power 3 Value = ', math.pow(2, 3))print('POW Function - 5 Power 4 Value = ', math.pow(5, 4)) print('\nSQRT Function - Square Root of 25 = ', math.sqrt(25))print('SQRT Function - Square Root of 19 = ', math.sqrt(19))`

Python Logarithmic Functions output

``````EXP Function - exp Value of 5 =  148.4131591025766
EXP Function - exp Value of -3 =  0.049787068367863944

EXPM1 Function - expm1 Value of 8 =  2979.9579870417283
EXPM1 Function - expm1 Value of -5 =  -0.9932620530009145

LOG Function - logarithmic Value of 5 =  1.6094379124341003
LOG Function - logarithmic Value of 100 Base 2 =  6.643856189774725

LOG2 Function - logarithmic Value of 120 Base 2 =  6.906890595608519

LOG10 Function - logarithmic Value of 150 Base 10 =  7.22881869049588

POW Function - 2 Power 3 Value =  8.0
POW Function - 5 Power 4 Value =  625.0

SQRT Function - Square Root of 25 =  5.0
SQRT Function - Square Root of 19 =  4.358898943540674``````

### Python Trigonometric Functions Example 1

In this Python Trigonometric Function example, we are going to use the sin, cos, and tan functions to find the Sine, Cosine, and Tangent Values. Next, we used the acos, asin, atan, and atan2 functions to find the Arc cosine, Arc Sine, and Arc Tangent values. Within the last statement, we used the hypot function

`# Python Trigonometric Functions Examples import math print('COS Function - Cosine of 10 = ', math.cos(10))print('COS Function - Cosine of -15 = ', math.cos(-15)) print('\nSIN Function - Sine of 3 = ', math.sin(3))print('SIN Function - Sine of -5 = ', math.sin(-5)) print('\nTAN Function - Tangent of 9 = ', math.tan(9))print('TAN Function - Tangent of -3 = ', math.tan(-3)) print('\nACOS Function - Arc Cosine of 1 = ', math.acos(1))print('ACOS Function - Arc Cosine of -0.78 = ', math.acos(-0.78)) print('\nASIN Function - Arc Sine of 1 = ', math.asin(1))print('ASIN Function - Arc Sine of -2 = ', math.asin(-0.42)) print('\nATAN Function - Arc Tangent of 0.72 = ', math.atan(0.72))print('ATAN Function - Arc Tangent of -2.71 = ', math.atan(-2.71))print('\nATAN2 Function - Tangent of 2, 5 = ', math.atan2(2, 5))print('\nHYPOT Function - Hypot Value of 2, 3 = ', math.hypot(2, 3))`

Python Trigonometric Functions output

``````COS Function - Cosine of 10 =  -0.8390715290764524
COS Function - Cosine of -15 =  -0.7596879128588212

SIN Function - Sine of 3 =  0.1411200080598672
SIN Function - Sine of -5 =  0.9589242746631385

TAN Function - Tangent of 9 =  -0.4523156594418099
TAN Function - Tangent of -3 =  0.1425465430742778

ACOS Function - Arc Cosine of 1 =  0.0
ACOS Function - Arc Cosine of -0.78 =  2.4654621440291318

ASIN Function - Arc Sine of 1 =  1.5707963267948966
ASIN Function - Arc Sine of -2 =  -0.43344532006988595

ATAN Function - Arc Tangent of 0.72 =  0.6240230529767569
ATAN Function - Arc Tangent of -2.71 =  -1.2172930308235297

ATAN2 Function - Tangent of 2, 5 =  0.3805063771123649

HYPOT Function - Hypot Value of 2, 3 =  3.6055512754639896``````

### Python Trigonometric Functions Example 2

In this Python Trigonometric Function example, we use the Hyperbolic functions. First, we used the cosh, sinh, and tanh functions to find the Hyperbolic Cosine, Sine, and Tangent Values. Next, acosh, asinh, and atanh functions to find the Hyperbolic Arc cosine, Arc Sine, and Hyperbolic Arc Tangent value.

`# Python Trigonometric Functions Examplesimport mathprint('COSH Function - Hyperbolic Cosine of 2 = ', math.cosh(2))print('COSH Function - Hyperbolic Cosine of -1 = ', math.cosh(-1)) print('\nSINH Function - Hyperbolic Sine of 3 = ', math.sinh(3))print('SINH Function - Hyperbolic Sine of -5 = ', math.sinh(-5)) print('\nTANH Function - Hyperbolic Tangent of 1 = ', math.tanh(1))print('TANH Function - Hyperbolic Tangent of -3 = ', math.tanh(-3)) print('\nACOSH Function - Hyperbolic Arc Cosine of 10 = ', math.acosh(10))print('ACOSH Function - Hyperbolic Arc Cosine of 30.78 = ', math.acosh(30.78)) print('\nASINH Function - Hyperbolic Arc Sine of 15 = ', math.asinh(15))print('ASINH Function - Hyperbolic Arc Sine of -25 = ', math.asinh(-25)) print('\nATANH Function - Hyperbolic Arc Tangent of 0.57 = ', math.atanh(0.57))print('ATANH Function - Hyperbolic Arc Tangent of -0.71 = ', math.atanh(-0.71))`

Python Hyperbolic Trigonometric Functions output

``````COSH Function - Hyperbolic Cosine of 2 =  3.7621956910836314
COSH Function - Hyperbolic Cosine of -1 =  1.5430806348152437

SINH Function - Hyperbolic Sine of 3 =  10.017874927409903
SINH Function - Hyperbolic Sine of -5 =  -74.20321057778875

TANH Function - Hyperbolic Tangent of 1 =  0.7615941559557649
TANH Function - Hyperbolic Tangent of -3 =  -0.9950547536867305

ACOSH Function - Hyperbolic Arc Cosine of 10 =  2.993222846126381
ACOSH Function - Hyperbolic Arc Cosine of 30.78 =  4.119748326708938

ASINH Function - Hyperbolic Arc Sine of 15 =  3.4023066454805946
ASINH Function - Hyperbolic Arc Sine of -25 =  -3.9124227656412556

ATANH Function - Hyperbolic Arc Tangent of 0.57 =  0.6475228448273728
ATANH Function - Hyperbolic Arc Tangent of -0.71 =  -0.8871838632580928``````

### Python Angular and Special Functions Example

In this Python Angular Functions example, we used the degrees and radians functions to convert degrees to radians vice versa. Next, we used the gamma and lgamma functions to return the gamma values.

`# Python Angular and Special Functions Examples import math print('DEGREES Function - Degrees Value of 6 = ', math.degrees(5))print('DEGREES Function - Degrees Value of 12 = ', math.degrees(12)) print('\nRADIANS Function - Radians Value of 350 = ', math.radians(350))print('\nRADIANS Function - Radians Value of 680 = ', math.radians(680)) print('\nGAMMA Function - Gamma Value of 8 = ', math.gamma(8))print('LGAMMA Function - LGamma Value of 9 = ', math.lgamma(9))`