Tutorial Gateway

  • C
  • C#
  • Java
  • Python
  • SQL
  • MySQL
  • Js
  • BI Tools
    • Informatica
    • Talend
    • Tableau
    • Power BI
    • SSIS
    • SSRS
    • SSAS
    • MDX
    • R Tutorial
    • Alteryx
    • QlikView
  • More
    • C Programs
    • C++ Programs
    • Go Programs
    • Python Programs
    • Java Programs

Python Numpy Exponential Functions

by suresh

The Python numpy module has exponential functions used to calculate the exponential and logarithmic values of a single, two, and three-dimensional arrays. And they are exp, exp2, expm1, log, log2, log10, and log1p. You can use Python numpy Exponential Functions, such as exp, exp2, and expm1, to find exponential values. The following four functions log, log2, log10, and log1p in Python numpy module calculates the logarithmic values.

Python numpy Exponential Functions

The following list of examples helps understand the numpy Exponential Functions

Python numpy exp

The Python numpy exp function calculates and returns the exponential value of each item in a given array. First, we declared a single-dimensional array, two dimensional and three-dimensional random arrays of different sizes. Next, we used the Python numpy exp function on those arrays to calculate exponential values.

import numpy as np
 
arr = np.array([0, 1, 2, 3, 4])
print(arr)
print('---Exponential Values of arr---')
print(np.exp(arr))
 
arr1 = np.random.randint(0, 6, size = (3, 4))
print('\n-----Two Dimensional Random Array----')
print(arr1)
print('---Exponential Values of Two Dimensional Random Array---')
print(np.exp(arr1))
 
arr2 = np.random.randint(0, 10, size = (2, 3, 4))
print('\n-----Three Dimensional Array----')
print(arr2)
print('---Exponential Values of Three Dimensional Random Array---')
print(np.exp(arr2))
Python Numpy exp function

Python numpy exp2

The Python numpy exp2 function calculates 2**p, where p means each item in a given numpy array. Here, we used the numpy exp2 function on those arrays to calculate exponential values. For example, exp2(3) = 2 **3 => 2 * 2 * 2 = 8.

import numpy as np
 
arr = np.array([0, 1, 2, 3, 4])
print(arr)
print('---Exponential Values of arr---')
print(np.exp2(arr))
 
arr1 = np.random.randint(0, 6, size = (3, 7))
print('\n-----Two Dimensional Random Array----')
print(arr1)
print('---Exponential Values of Two Dimensional Random Array---')
print(np.exp2(arr1))
 
arr2 = np.random.randint(0, 10, size = (2, 3, 8))
print('\n-----Three Dimensional Array----')
print(arr2)
print('---Exponential Values of Three Dimensional Random Array---')
print(np.exp2(arr2))
Python Numpy exp2 function

Python numpy expm1

The Python numpy expm1 function calculates exponential values  – 1 of all the items in a given array. It means, expm1(array_name) =  exp(array_name) – 1. Here, we used the Python numpy expm1 function to calculate exponential values.

import numpy as np
 
arr = np.array([0, 1, 2, 3, 4])
print(arr)
print('---Exponential Values of arr---')
print(np.expm1(arr))
 
arr1 = np.random.randint(0, 6, size = (3, 5))
print('\n-----Two Dimensional Random Array----')
print(arr1)
print('---Exponential Values of Two Dimensional Random Array---')
print(np.expm1(arr1))
 
arr2 = np.random.randint(0, 10, size = (2, 3, 4))
print('\n-----Three Dimensional Array----')
print(arr2)
print('---Exponential Values of Three Dimensional Random Array---')
print(np.expm1(arr2))
Python Numpy expm1 function

Python numpy Logarithmic Functions

The following examples helps understand the numpy logarithmic Functions

Python numpy log

The Python numpy log function calculates the natural logarithmic value of each item in a given array. We declared 1D, 2D, and 3D random arrays of different sizes. Next, we used the Python numpy log function on those arrays to calculate logarithmic values.

import numpy as np
 
arr = np.array([1, 2, 3, 4])
print(arr)
print('---Logarithmic Values of arr---')
print(np.log(arr))
 
arr1 = np.random.randint(1, 15, size = (3, 4))
print('\n-----Two Dimensional Random Array----')
print(arr1)
print('---Logarithmic Values of Two Dimensional Random Array---')
print(np.log(arr1))
 
arr2 = np.random.randint(16, 60, size = (2, 3, 4))
print('\n-----Three Dimensional Array----')
print(arr2)
print('---Logarithmic Values of Three Dimensional Random Array---')
print(np.log(arr2))
Python Numpy log Function

Python Numpy log2

The Python Numpy log2 function calculates the base 2 logarithmic value of all the items in a given array. Using the Python Numpy log2 function on 1D, 2D, and 3D arrays to calculate base 2 logarithmic values.

import numpy as np
 
arr = np.array([1, 2, 3, 4, 5])
print(arr)
print('---Base 2 Logarithmic Values of arr---')
print(np.log2(arr))
 
arr1 = np.random.randint(1, 15, size = (3, 4))
print('\n-----Two Dimensional Random Array----')
print(arr1)
print('---Base 2 Logarithmic Values of Random Two Dimensional Array---')
print(np.log2(arr1))
 
arr2 = np.random.randint(16, 60, size = (2, 3, 4))
print('\n-----Three Dimensional Array----')
print(arr2)
print('---Base 2 Logarithmic Values of Random Three Dimensional Array---')
print(np.log2(arr2))
Python Numpy log2 Function

Python numpy log10

The Python numpy log10 function calculates the base 10 logarithmic value of all the array items in a given array. We used the Python numpy log10 function on 1D, 2D, and 3D arrays to calculate base 10 logarithmic values.

import numpy as np
 
arr = np.array([1, 2, 3, 4, 5])
print(arr)
print('---Base 10 Logarithmic Values of arr---')
print(np.log10(arr))
 
arr1 = np.random.randint(1, 15, size = (3, 5))
print('\n-----Two Dimensional Random Array----')
print(arr1)
print('---Base 10 Logarithmic Values of Random Two Dimensional Array---')
print(np.log10(arr1))
 
arr2 = np.random.randint(25, 180, size = (2, 3, 5))
print('\n-----Three Dimensional Array----')
print(arr2)
print('---Base 10 Logarithmic Values of Random Three Dimensional Array---')
print(np.log10(arr2))
Python Numpy log10 Function

Python numpy log1p

The Python numpy log1p function calculates the natural logarithmic value of 1 plus all the array items in a given array. I mean log1p also called log(1 + array_name). In this example, we used the Python numpy log1p function on 1D, 2D and 3D random arrays to calculate natural logarithmic values.

import numpy as np
 
arr = np.array([1, 2, 3, 4, 5])
print(arr)
print('---log1p Values of arr---')
print(np.log1p(arr))
 
arr1 = np.random.randint(0, 15, size = (3, 5))
print('\n-----Two Dimensional Random Array----')
print(arr1)
print('---log1p Values of Random Two Dimensional Array---')
print(np.log1p(arr1))
 
arr2 = np.random.randint(25, 380, size = (2, 3, 5))
print('\n-----Three Dimensional Array----')
print(arr2)
print('---log1p Values of Random Three Dimensional Array---')
print(np.log1p(arr2))
Python Numpy log1p Function

Placed Under: Python

  • Download and Install Python
  • Python Arithmetic Operators
  • Python Assignment Operators
  • Python Bitwise Operators
  • Python Comparison Operators
  • Python Logical Operators
  • Python If Statement
  • Python If Else
  • Python Elif Statement
  • Python Nested If
  • Python For Loop
  • Python While Loop
  • Python Break
  • Python Continue
  • Python Dictionary
  • Python datetime
  • Python String
  • Python Set
  • Python Tuple
  • Python List
  • Python List Comprehensions
  • Python Lambda Function
  • Python Functions
  • Python Types of Functions
  • Python Iterator
  • Python File Handling
  • Python Directory
  • Python Class
  • Python classmethod
  • Python Inheritance
  • Python Method Overriding
  • Python Static Method
  • Connect Python and SQL Server
  • Python SQL Create DB
  • Python SQL Select Top
  • Python SQL Where Clause
  • Python SQL Order By
  • Python SQL Select Statement
  • Python len Function
  • Python max Function
  • Python map Function
  • Python print Function
  • Python sort Function
  • Python range Function
  • Python zip Function
  • Python Math Functions
  • Python String Functions
  • Python List Functions
  • Python NumPy Array
  • NumPy Aggregate Functions
  • NumPy Arithmetic Operations
  • Python Numpy Bitwise operators
  • Numpy Comparison Operators
  • Numpy Exponential Functions
  • Python Numpy logical operators
  • Python numpy String Functions
  • NumPy Trigonometric Functions
  • Python random Array
  • Python numpy concatenate
  • Python numpy Array shape
  • Python pandas DataFrame
  • Pandas DataFrame plot
  • Python Series
  • Python matplotlib Histogram
  • Python matplotlib Scatter Plot
  • Python matplotlib Pie Chart
  • Python matplotlib Bar Chart
  • Python List Length
  • Python sort List Function
  • Python String Concatenation
  • Python String Length
  • Python substring
  • Python Programming Examples

Copyright © 2021 · All Rights Reserved by Suresh

About Us | Contact Us | Privacy Policy